Extensions 1→N→G→Q→1 with N=C3×C22.F5 and Q=C2

Direct product G=N×Q with N=C3×C22.F5 and Q=C2
dρLabelID
C6×C22.F5240C6xC2^2.F5480,1058

Semidirect products G=N:Q with N=C3×C22.F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C22.F5)⋊1C2 = Dic5.D12φ: C2/C1C2 ⊆ Out C3×C22.F51208+(C3xC2^2.F5):1C2480,250
(C3×C22.F5)⋊2C2 = S3×C22.F5φ: C2/C1C2 ⊆ Out C3×C22.F51208-(C3xC2^2.F5):2C2480,1004
(C3×C22.F5)⋊3C2 = D15⋊C8⋊C2φ: C2/C1C2 ⊆ Out C3×C22.F52408(C3xC2^2.F5):3C2480,1005
(C3×C22.F5)⋊4C2 = D152M4(2)φ: C2/C1C2 ⊆ Out C3×C22.F51208+(C3xC2^2.F5):4C2480,1007
(C3×C22.F5)⋊5C2 = C3×C23.F5φ: C2/C1C2 ⊆ Out C3×C22.F51204(C3xC2^2.F5):5C2480,293
(C3×C22.F5)⋊6C2 = C3×D4.F5φ: C2/C1C2 ⊆ Out C3×C22.F52408(C3xC2^2.F5):6C2480,1053
(C3×C22.F5)⋊7C2 = C3×D5⋊M4(2)φ: trivial image1204(C3xC2^2.F5):7C2480,1049

Non-split extensions G=N.Q with N=C3×C22.F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C22.F5).1C2 = Dic5.4D12φ: C2/C1C2 ⊆ Out C3×C22.F52408-(C3xC2^2.F5).1C2480,251
(C3×C22.F5).2C2 = C3×Dic5.D4φ: C2/C1C2 ⊆ Out C3×C22.F52404(C3xC2^2.F5).2C2480,285

׿
×
𝔽